

NITRÓGENO EN LAS INDUSTRIAS FARMACÉUTICA Y QUÍMICA

El nitrógeno es un elemento fundamental en las industrias farmacéutica y química debido a su inercia, disponibilidad y capacidad para intervenir en procesos sin reaccionar fácilmente. Su empleo es clave en diversas aplicaciones, garantizando la estabilidad, pureza y seguridad de productos y procesos.

EVA GARCÍA.

Pharma Business Developer Manager de Multifiltra.

1. Protección contra la oxidación (atmósfera inerte)

a. Industria farmacéutica

El nitrógeno es un gas inerte, incoloro e inodoro que se usa para proteger antibióticos y fármacos sensibles al oxígeno. Durante su manufactura, se emplea en envases y atmósferas controladas para prevenir la oxidación y degradación de estos productos.

b. Industria química

Se utiliza para evitar reacciones no deseadas en la síntesis de compuestos y para mantener la estabilidad en el almacenamiento de productos químicos, especialmente en procesos donde se manejan sustancias altamente reactivas o peligrosas.

2. Síntesis de productos farmacéuticos

a. Síntesis de principios activos

En la fabricación de medicamentos, algunos procesos requieren bajas temperaturas o un ambiente inerte para evitar reacciones no deseadas. El nitrógeno crea un entorno controlado que minimiza el riesgo de contaminación o alteración.

b. Fabricación de excipientes

Algunos excipientes farmacéuticos requieren un ambiente libre de oxígeno durante su producción, lo que

se garantiza con el uso de nitrógeno.

3. Ensayos y pruebas de calidad

a. Pruebas de integridad de filtros

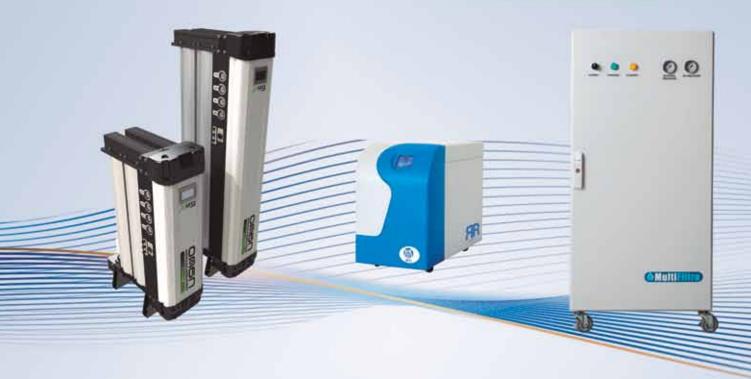
Este gas se introduce a través del filtro para verificar que no haya fugas o daños en el medio filtrante. Cambios en la presión o el flujo del nitrógeno confirman su eficacia y seguridad.

b. Pruebas de estabilidad

El nitrógeno se usa en pruebas de estabilidad para evitar la oxidación y simular almacenamiento prolongado de fármacos, garantizando su efectividad y vida útil.

c. Pruebas de hermeticidad

En la industria química, el nitrógeno verifica la estanqueidad de contenedores de productos sensibles, evitando fugas que afecten la calidad del producto.


4. Sistemas de control de presión y purificación de gases

a. Purificación de gases

El nitrógeno elimina impurezas y asegura que los reactivos sean de la máxima calidad para la producción de medicamentos o compuestos químicos.

b. Control de presión

Generadores de N₂ y otros gases para la industria farmacéutica

Especialistas en procesos de filtración

El nitrógeno es un gas inerte, incoloro e inodoro que se usa para proteger antibióticos y fármacos sensibles al oxígeno. Durante su manufactura, se emplea en envases y atmósferas controladas para prevenir la oxidación y degradación de estos productos.

En equipos de proceso como reactores o sistemas de síntesis, el nitrógeno ayuda a mantener una presión constante para el control preciso de las reacciones químicas.

5. Reacciones catalíticas

En la fabricación de compuestos químicos complejos, el nitrógeno se emplea en procesos catalíticos que requieren una atmósfera inerte para evitar reacciones no deseadas con el oxígeno o la humedad.

6. Laboratorios de investigación básica

Los laboratorios usan nitrógeno en procesos complejos como el análisis y transporte de productos químicos. En técnicas como la cromatografía líquida acoplada a espectrometría de masas (LC-MS), el nitrógeno desempeña un papel fundamental:

- Como gas nebulizador, facilita la separación del disolvente y la muestra ionizada.
- Actúa como gas portador para pulverizar la solución de muestra en un calentador.
- Funciona como gas de cortina, separando iones de muestras y disolventes.

Para estos procesos, se requiere nitrógeno con al menos un 95% de pureza, llegando hasta un 99,9999% en algunos casos. La calidad del nitrógeno es crucial para evitar impurezas que puedan afectar la precisión del análisis y dañar el equipo.

7. Transporte y almacenamiento

a. Medicamentos y compuestos químicos

Muchos compuestos activos, especialmente los de vida útil corta, se almacenan en envases con nitrógeno para evitar su descomposición. También se usa en el envasado de pastillas o cápsulas para prevenir su deterioro por exposición al oxígeno.

b. Contenedores de gas comprimido

En algunos productos químicos delicados, el nitrógeno se emplea en cilindros de gas comprimido para almacenar productos que requieren presión controlada.

8. Criogenia (congelación y preservación)

El nitrógeno líquido (-196°C) se usa en la industria farmacéutica y química para la criogenización, permitiendo el enfriamiento extremo de materiales.

- En la producción de fármacos, especialmente vacunas, preserva la estabilidad de sustancias biológicas y productos sensibles a la temperatura.
- Se usa en la congelación rápida de tejidos y células, así como en el transporte de medicamentos a temperaturas extremadamente bajas.
- En destilación criogénica y separación de sustancias, el nitrógeno líquido controla la temperatura y facilita la separación según los puntos de ebullición.

Conclusión

El uso del gas nitrógeno en la industria farmacéutica y química es esencial para garantizar la seguridad, estabilidad y eficiencia de numerosos procesos. Su aplicación abarca desde la protección contra la oxidación hasta la criogenia, contribuyendo al desarrollo de productos de alta calidad y prolongando su vida útil.